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Introduction

Medulloblastoma is the most common solid tumor found in 
children. These tumors arise in young children in the cerebel-
lum, a part of the brain that develops post-natally in children 
and mice.1 Some types of medulloblastoma are proposed to arise 
from proliferating CGNPs that fail to exit the cell cycle, migrate 
and/or differentiate.2 CGNP proliferation requires activation 
of the Shh pathway. Shh is secreted from Purkinje cells in the 
cerebellum and binds to its receptor Patched (Ptc) on CGNPs, 
which prevents inhibition of Smoothened (Smo) and activates 
transcription of Shh targets, such as the Gli transcription factors, 
N-myc and the D-type cyclins, to drive CGNP proliferation.3-5 

Mutations causing aberrant activation of the Shh signaling path-
way are implicated in human and mouse medulloblastomas.6,7 To 
promote proliferation and oncogenic transformation, Shh alone 
is not sufficient; cooperative interactions with other signaling 
pathways are required.4,8-12

CGNP proliferation is regulated by cyclin dependent kinases 
(Cdk4/6) in cooperation with D-type cyclins.13-14 However, cell 
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cycle progression in cerebellar development is often controlled by 
Cdk inhibitors, p18INK4c and p27Kip1.15 While p18INK4c preferen-
tially targets Cdk4 and Cdk6, p27Kip1 has three distinct roles: (1) 
mediates cyclin D/Cdk4/6 assembly formation; (2) controls the 
late G1 phase by binding to and inhibiting Cdk2 and cyclin E; (3) 
regulates cell motility by binding to and inhibiting RhoA.16-24 In 
the cerebellum, nuclear p27Kip1 is found in post-mitotic and differ-
entiated CGNPs, suggesting its ability to regulate cell cycle exit.25 
Indeed, losing p27Kip1 in cerebellar development accelerates CGNP 
proliferation.15,25 Low levels of p27Kip1 have been linked with high-
grade tumors, including brain tumors such as astrocytoma and 
glioblastoma multiforme.26-30 Previous studies have shown that 
mislocalized p27Kip1 is associated with aggressive tumors, suggest-
ing an oncogenic role in this context.31-34 We previously reported 
that p27Kip1 is mislocalized in Shh-mediated medulloblastoma, and 
this localization is Akt- and TSC2-dependent.11,35 More recently, 
Ayrault et al. observed that mice heterozygous for Patched and 
either heterozygous or nullizygous for p27Kip1 develop medullo-
blastoma and with high penetrance and accelerated rate.8 In addi-
tion, these tumors retain the progenitor cell marker Math-1, which 
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is expressed in proliferating CGNPs. These finding suggested that 
reduced levels of p27Kip1 could contribute to maintenance of a  
precursor cell phenotype that could be vulnerable to transforming 
events.

Here, using mice that express an activated mutant allele of the 
Shh receptor component Smoothened (SmoA1), we show that 
p27Kip1 is mislocalized in CGNPs and Shh-mediated medullo-
blastomas. We also find that SmoA1 mice lacking one or both 
p27Kip1 alleles have reduced survival compared to mice having 
two wild-type p27Kip1 alleles. Interestingly, SmoA1 mice hetero-
zygous for p27Kip1 have decreased survival latency compared to 
mice lacking both copies of p27Kip1. Our results suggest that this 

may be due to retention of a single copy of p27Kip1 being sufficient 
to recruit cyclin D/Cdk4/6 to promote cell cycle progression 
yet insufficient to inhibit cyclin E/Cdk2. Finally, we show that 
p27Kip1 can interact with RhoA, perhaps contributing to tumor 
cell motility and invasion, and may underlie the more aggressive 
nature of p27Kip1 heterozygous medulloblastomas in comparison 
with the tumors arising in the p27Kip1-null mice.

Results and Discussion

p27Kip1 is mislocalized in shh-mediated medulloblastoma. We 
have previously observed that p27Kip1 is found in the cytoplasm 

Figure 1. p27Kip1 is mislocalized in Shh-mediated medulloblastoma. (A) In cerebellar development of post-natal day 7, the peak for CGNP prolifera-
tion, p27Kip1 (green) is expressed in post-mitotic region, external granule layer b (EGLb), molecular layer (ML) and differentiated region inner granule 
layer (IGL), whereas aberrant Shh signaling leads to p27Kip1 mislocalization and increased CGNP proliferation throughout the EGL.  Proliferation marker 
PCNA (red) stains CGNPs in proliferating region EGLa.  (B) Wild-type and SmoA1 CGNPs were plated, treated with Shh and measured for proliferation 
by quantification of phospho-Histone H3. (C) While non-tumor cells undergo cell cycle exit and/or differentiation via p27Kip1 nuclear localization in the 
IGL, the Shh-induced medulloblastoma maintains misregulated phosphorylation of p27Kip1 at Ser10 and Thr187, which leads to mislocalization and 
inhibition of cell cycle regulation.  (D) Non-tumors in NeuroD2-SmoA1 mice have nuclear p27Kip1 (first column), whereas SmoA1 medulloblastoma have 
cytoplasmic p27Kip1 (second column) and high proliferation (third and fourth column).
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of medulloblastomas arising in NeuroD2-SmoA1 
transgenic mice. These mice express an activated 
mutant allele of the Shh receptor component 
Smoothened in the cerebellar progenitor com-
partment.36 Approximately 60% of these mice 
develop medulloblastoma by 6 months of age. To 
explore the contribution of nuclear and cytoplas-
mic p27Kip1 to Shh-driven CGNP proliferation 
and medulloblastoma, we analyzed cerebella in 
wild-type and SmoA1 mice at post-natal day 7, 
the peak of CGNP proliferation. In wild-type 
mice, p27Kip1 is present in the nucleus of CGNPs 
in the post-mitotic region of the external gran-
ule layer (EGLb) and in the differentiated region 
inner granule layer (IGL) (fig. 1a). In contrast, 
SmoA1 mice have cytoplasmic p27Kip1 through-
out the EGL, and this correlates with increased 
proliferation as determined by staining for 
Proliferating Cell Nuclear Antigen (PCNA,  
fig. 1a). 

Next, to confirm whether aberrant Shh sig-
naling leads to increased CGNP proliferation, 
we cultured CGNPs from wild type and SmoA1 
mice in the presence or absence of exogenous Shh. 
We found that vehicle-treated SmoA1 CGNPs 
have more phospho-Histone H3 (+) cells than 
wild-type cells (fig. 1b). Addition of Shh to the 
growth medium increased proliferation of wild-
type and SmoA1 CGNPs, with SmoA1 CGNPs 
proliferating at a significantly higher rate, suggest-
ing that these mutant CGNPs are Shh-responsive 
and potentially benefit from cytoplasmic p27Kip1.

Tumor cells benefit by phosphorylation and/or 
mislocalization of tumor suppressor genes.34,37-40 
To determine whether this is the case for p27Kip1 
in Shh-driven medulloblastomas, we utilized 
whole cell lysates from SmoA1 medulloblastoma 
tumors and adjacent cerebella. Using western 
blot analysis, we found that p27Kip1 is phosphory-
lated at Ser10, which is responsible for its nuclear 
export,41-44 and at Thr187, which is regulated 
by active cyclin E and cyclin A/Cdk2 leading 
to Skp2-mediated ubiquitinated degradation 
(fig. 1c).45,46 Using immunfluorescence analysis, 
as shown in figure 1d, adult mouse cerebellar 
tissue features nuclear p27Kip1 in differentiated 
granule neurons occupying the internal granule 
layer (IGL). However, in SmoA1 medulloblas-
toma tissue, which is highly proliferative, p27Kip1 
is found in the cytoplasm. Together, this suggests that misregu-
lated Shh signaling alters p27Kip1 localization and is correlated 
with increased cell proliferation.

p27Kip1 gene dose affects medulloblastoma incidence and 
onset in smoa1 mice. The transmembrane protein Patched (Ptc) 
is a tumor suppressor that negatively regulates Smoothened activ-
ity and whose loss is associated with medulloblastoma formation 

Figure 2 (A–C). p27Kip1 loss accelerates medulloblastoma incidence in SmoA1 mice. 
(A) p27Kip1 loss accelerates medulloblastoma incidence in homozygous and hemizygous 
mice for SmoA1 transgene.  (B and C) SmoA1 mice heterozygous for p27Kip1 have a dra-
matic decreased survival latency compared to homozygous and nullizygous for p27Kip1.  

in humans.47,48 Similarly, mice heterozygous for Ptc are pre-
disposed to develop medulloblastomas.49 Recently, it has been 
reported that p27Kip1 hetero- or nullizygousity increases medul-
loblastoma incidence in Ptc+/- mice.8 Activating mutations in 
Smoothened are also found in human medulloblastomas,50 and 
this can be phenocopied in mice using the NeuroD2-SmoA1 and 
SmoM1/M2 alleles.36,51-52 To assess whether p27Kip1 gene dosage 
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and localization affects medulloblastoma forma-
tion in this model of constitutive Shh pathway 
activation, we generated homozygous SmoA1 mice 
lacking one or both p27Kip1 alleles. SmoA1 mice 
were previously reported to develop medulloblas-
toma at a high incidence (~90%) and a mean time 
of occurrence of 5 to 6 months.53 We observed a 
lower medulloblastoma incidence (~53%) in our 
mouse colony (fig. 2a). However, losing one or 
both p27Kip1 alleles increased tumor incidence to 
~84% and ~100%, respectively. Among the homo-
zygous SmoA1 medulloblastoma-bearing mice, 
the p27Kip1 heterozygous mice have a reduced sur-
vival time (median survival of 61 days) than wild 
type (median survival of 147 days) and nullizygous 
(median survival of 71 days) (fig. 2b).

Surprisingly, when we generated hemizygous 
SmoA1 mice lacking one or both p27 alleles, we 
observed that hemizygous SmoA1 mice hetero-
zygous for p27Kip1 have a higher tumor incidence 
(~68%) than wild type (~39%) or nullizygous for 
p27Kip1 (~45%). Among the hemizygous SmoA1 
medulloblastoma-bearing mice, the p27Kip1 het-
erozygous mice have a strikingly reduced survival 
time (median survival of 105 days) compared with 
wild-type (median survival of 186 days) and p27 
nullizygous mice (median survival of 204 days) 
(fig. 2c). The increased tumor incidence and 
dramatically reduced survival of homozygous and 
hemizygous SmoA1 medulloblastoma-bearing 
mice suggests p27Kip1 is haploinsufficient in Shh-
mediated medulloblastomas. These results are 
consistent with reduced p27Kip1 function promot-
ing enhanced CGNP transformation in the setting 
of activated Shh signaling.

To determine how p27Kip1 loss contributes to 
SmoA1 medulloblastoma formation, we inves-
tigated how G1- and S-phase cell cycle regula-
tors are affected by p27Kip1 reduction or loss in adult cerebella 
and medulloblastoma of SmoA1 mice. We observed high pro-
tein levels of D-type cyclins in tumors compared to non-tumors 
(fig.  2d). These tumors also maintained high levels of N-myc, 
a Shh transcriptional target;4,54 Bmi-1, a progenitor cell marker 
implicated in Shh-driven medulloblastoma;11,55-56 cyclin A and 
cyclin E. Consistent with our previous report, active mTOR sig-
naling, which is vital for cell growth, was found in these tumors, 
based on ribosomal protein-S6 phosphorylation.11 Finally, previ-
ous reports have shown that tyrosine phosphorylation of p27Kip1 
by c-Abl and Src family kinases initiates the transition of p27Kip1 
from inhibitor of cyclin E/Cdk2 in G0 phase to substrate of 
cyclin/Cdk2 in G1 phase, therefore making p27Kip1 a poor Cdk2 
inhibitor and potentially a promoter of cyclin D/ Cdk4 assem-
bly.20,57-58 While we find Src to be present in both non-tumor 
tissue and tumors, we observed high levels of c-Abl in Shh-
medulloblastoma. Thus, all of the tumors are highly prolifera-
tive, regardless of p27 gene status.

cyclin d/cdk4/6 assembly is dependent on p27Kip1. 
Progression from G1 to S phase of the cell cycle requires assembly 
of D-type cyclin:Cdk complexes.19 It has been shown that p27Kip1 
has an essential role in assembly and stability of cyclin D/Cdk4/6 
complexes.20-21 We speculated that the increased aggressiveness 
of p27Kip1 heterozygous medulloblastomas in the hemizygous 
mice might be due to differential assembly of D-type cyclin:Cdk 
complexes in comparison to the p27Kip1-null mice. Using co-
immunprecipitation and western blotting from cerebella and 
medulloblastomas from SmoA1 mice, we found that p27Kip1 is 
bound with cyclin D1, Cdk4 and Cdk6 in tumors but not in the 
normal cerebella tissue (fig. 3a). Next, to see if this assembly is 
affected by p27Kip1 gene dosage, we performed immunoprecipita-
tion using tumors and cerebellar tissue from hemizygous SmoA1 
mice that are either wild type, heterozygous or nullizygous for 
p27Kip1. We chose hemizygous SmoA1 mice because of the sig-
nificant effect p27 heterozygosity has on tumor latency in that 
genetic background. We observed decreased interaction between 
cyclin D1 and Cdk6 as tumors lose p27Kip1 (fig. 3b), which would 

Figure 2D. p27Kip1 loss accelerates medulloblastoma incidence in SmoA1 mice. (D) West-
ern blot analysis of cell cycle indicators in NeuroD2-SmoA1 medulloblastomas arising in 
wild-type, p27+/- and p27-/- mice.
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be consistent with impaired cyclin D1:Cdk6 complex assembly, 
which may impede G1 cell cycle progression. In its role as a tumor 
suppressor and negative cell cycle regulator, p27Kip1 binds to and 
inhibits cyclin E/Cdk2 to prevent late G1-to-S progression, lead-
ing to cell cycle exit.19 Medulloblastomas that are heterozygous 
or null for p27Kip1 show less cyclin E bound to p27Kip1, suggesting 
ongoing activity of the cyclin E:Cdk2 complex, which promotes 
pRb inactivation. Together, this may reflect the requirement for 
p27Kip1 in recruiting cyclin D/Cdk4/6 to promote cell cycle pro-
gression, yet insufficient to inhibit cyclin E/ Cdk2 in these tumors.

cytosolic p27Kip1 plays a role in cell motility in smoa1 
medulloblastoma. The observation that p27Kip1 is predominantly 
mislocalized rather than undergoing degradation in SmoA1 
medulloblastomas suggests it may have a functional role in the 
cytoplasm of these tumor cells. Recent studies have suggested 
that cytoplasmic p27Kip1 plays an oncogenic role in mediat-
ing cell motility by preventing activation of RhoA, a regulator  

of actin cytoskeleton in the formation of stress fibers  
(fig. 4a).17,22,37,59-61 Cell migration is controlled by RhoA sig-
naling and is dependent on RhoA to convert from the GDP-
inactive state to GTP-active state.62 RhoA-GTP stabilizes 
actin stress fibers through the activation of its substrate Rho-
associated, coiled-coil containing protein kinase (ROCK), 
which then phosphorylates and activates LIM domain-con-
taining protein kinases (LIMK). LIMK in turn phosphory-
lates and inhibits the actin depolymerization-promoting 
protein cofilin, resulting in stabilization of stress fibers. See 
et al. showed that p27Kip1 deficiency in PDGF-expressing glial 
cells correlated with elevated levels of Rho-GTP and reduced 
cell migration.63 We therefore asked whether p27Kip1 might 
play a role in cell motility in Shh-mediated medulloblasto-
mas. We first co-stained p27Kip1 with phospho-LIMK and 
phospho-cofilin in these tumors and found an inverse rela-
tionship between p27Kip1 and these markers of motility inhi-
bition, therefore suggesting that these tumor cells carrying 
cytoplasmic p27Kip1 have increased cell motility (fig. 4b). 

p27Kip1 can regulate cell migration by binding to RhoA, 
potentially interfering its GDP state-to-GTP state conversion 
and/or its relationship to activate ROCK.17,64-65 To determine 
a potential relationship between p27Kip1 and RhoA, we then 
carried out subcellular fractionation and immunprecipitation/
western blotting of these tumor cells and found that these 
proteins interact in the cytoplasm (fig. 4c, 4d). Though 
p27Kip1 serves as a tumor suppressor to regulate cell cycle 
progression in the nucleus, it may also be stabilized in the 
cytoplasm to contribute to oncogenesis independent of its cell 
cycle functions to promote cell motility and invasion. Other 
members of the Cip/Kip class possess similar characteris-
tics. Cytoplasmic p21Cip1 can inhibit ROCK activity, whereas 
p57Kip2 inhibits the function of LIMK by sequestering it in 
the cytoplasm, away from its substrate cofilin.23,38-39,66-67 We 
have previously shown the expression analysis of CDKN1B 
(p27Kip1) in human Shh-subgroup medulloblastomas and 
found a moderate decrease compared with adult cerebellum.11 
p27Kip1 is not a classic tumor suppressor, as it is rarely mutated 
or deleted in cancer, but rather often deregulated in cancer 
by post-translational modifications.68-69 While our data sug-
gest that p27Kip1 may be a useful biomarker, it is unknown 
whether cytoplasmic p27 is seen in human medulloblastoma. 
Therefore, more work is needed in human medulloblastoma 
studies to define its regulation, as it serves an important role 
in controlling tumor cell growth and could potentially serve 
as a therapeutic target in clinical trials. 

Materials and Methods

mice. Harvest of neural precursors from neonatal mice and 
preparation of cerebella and tumor tissue from wild-type 
and mutant mice for histological analysis were carried out in 
compliance with the Memorial Sloan-Kettering Institutional 
animal care and use committee guidelines. C57-BL6 wild-
type mice (Jackson Laboratories), heterozygous and nullizy-
gous p27 mice (kindly given by Andrew Koff of Memorial 

Figure 3. Cyclin D/Cdk4/6 assembly is dependent on p27Kip1. (A) Immu-
noprecipitation shows p27Kip1 interacts with cyclin D1, Cdk4/6 in SmoA1 
medulloblastoma. (B) Immunoprecipitation shows decreased cyclin D1/
Cdk6 interaction as a result of p27Kip1 loss. Tumor proliferation benefits as 
cyclin E/p27Kip1 is decreased, suggesting p27Kip1 is haploinsufficient as a 
tumor suppressor.
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Sloan-Kettering Cancer Center)70 and NeuroD2-SmoA1 
mice (kindly provided by Jim Olson of Fred Hutchinson 
Cancer Research Center)36 were used.

Genotyping. p27Kip1-null male mice were bred to 
SmoA1 female mice to generate SmoA1/+; p27+/- F1 mice. 
Intercrossing these mice led to other genotypes used for 
analysis. SmoA1 mice were genotyped by PCR as previ-
ously described.36 To distinguish hemizygous from homo-
zygous SmoA1 mice, QPCR was performed as described 
in www.jax.org. 

cGnP culture. CGNP cultures were generated as pre-
viously described.4 Cells were plated on individual poly-
DL-ornithine (Sigma) pre-coated plates or pre-coated 
glass coverslips for immunostaining. Where indicated, Shh 
(R&D Systems) was used at a concentration of 3 μg/mL 
for 48 hrs.

immunoblotting, immunoprecipitation and subcel-
lular fractionation. Protein extracts were prepared as 
previously described.5 A total of 50 μg murine cerebella 
and medulloblastoma protein, were run on 8-12% SDS-
polyacrylamide gels and transferred to a PVDF membrane 
(Millipore). The blots were blocked in 5% milk for one 
hour at room temperature and incubated with primary 
antibodies in 3% BSA (in TBS-T) or 5% milk overnight 
at 4°C. Blots were washed three times and incubated 
with secondary antibodies in 5% milk in TBS-T for two 
hours at room temperature. After washing, the signals 
were developed using the enhanced chemiluminescence 
method (Amersham), and the membranes were exposed 
to Kodak Biomax film. Primary antibodies were: total 
p27 (BD Transduction Labs), phospho-p27 S10 and T187 
(Santa Cruz), Cdk4 (C-22; Santa Cruz), Cdk6 (C-21; 
Santa Cruz), cyclin D1 (H-295; Santa Cruz), cyclin D2 
(M-20; Santa Cruz), cyclin E (M-20; Santa Cruz), cyclin 
A (H-432; Santa Cruz), N-myc (C-19; Santa Cruz), Bmi-1 
(Upstate), phospho- and total rp-S6 (Cell Signaling), Src 
(Cell Signaling), c-Abl (K-12; Santa Cruz) and b-tubulin 
(Sigma). HRP conjugated secondary antibodies were: goat 
anti-rabbit IgG (H+L) (Thermo Scientific) and donkey 
anti-mouse IgG (H+L) (Jackson Immuno Research).

For immunoprecipitation studies, 1 mg of protein 
extract was used in each case. Ten μg of antibody were 
incubated with protein A-sepharose for 2 h. Protein 
extracts were precleared with protein A-sepharose for 2 h and 
then incubated with the antibody plus protein A-sepharose over-
night. The precipitate was washed four times and proteins were 
eluted with 0.2 M glycine and neutralized with 1M Tris pH 7.4. 
Antibodies used for immunoprecipitation were same as above. 
Rabbit IgG was used as control (Upstate Biotechnologies).

Subcellular fractionation was performed using NE-PER 
Nuclear and Cytoplasmic Extraction Reagents (Pierce) follow-
ing the manufacturer’s instructions. Protein content was deter-
mined by using the Bio-Rad protein assay. Antibodies used for 
subcellular fractionation were: p27 (BD Transduction Labs), 
RhoA (119; Santa Cruz), GADPH (Cell Signaling), and c-jun 
(Calbiochem).

immunofluorescence. CGNPs were fixed in 4% PFA for 10 
minutes. Cells were then washed with 1xPBS and permeabilized 
in 1% TritonX-100 for 5 minutes. Cells were blocked in 5% goat 
serum in PBS-T (1xPBS and 0.1% TritonX-100) for one hour 
atroom temperature, washed once with 1xPBS and then incu-
bated with primary antibody in 2.5% goat serum (in PBS-T) 
overnight at 4°C. They were washed three times with 1xPBS and 
incubated with secondary antibody for two hours at room tem-
perature, then washed and mounted in DAPI-containing mount-
ing medium (Vector Labs). 

Paraffin-embedded tissue slides were processed as previously 
described before incubation with primary antibodies.11 Primary 
antibodies used were: p27 (BD Transduction Labs), PCNA 

Figure 4. p27Kip1 plays a role in cell motility in SmoA1 medulloblastoma. (A) 
Schematic diagram of p27Kip1 regulating cell motility in tumor cells. (B) Immu-
nofluorescence shows p27Kip1 is inversely correlated with stabilized cell motility, 
as evidenced by p27Kip1 (green), active phosphorylated-LIMK to prevent cell 
motility (red, left panel) and inactive phosphorylation of LIMK substrate and 
actin-depolymerization protein cofilin (red, right panel) in SmoA1 medulloblas-
toma. (C) Subcellular fractionation of SmoA1 medulloblastoma shows p27Kip1 
and cell motility regulator RhoA are localized mainly in the cytoplasm. GAPDH 
serves as cytosolic control and c-jun as nuclear control. (D) Immunoprecipi-
tation of p27Kip1 reveals interaction with RhoA. This data suggests p27Kip1 is 
needed to positively regulate cell motility in SmoA1 medulloblastoma.
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